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Abstract--A formulation in terms of a Fredholm integral equation of the first kind is given for the axisymmetric 
problem of a solid rotating in a bounded viscous fluid whose surface is contaminated with an immiscible 
surfactant film. The particular case of a rotating thin circular disk immersed in a semi-infinite body of fluid is 
studied in detail, the problem being reduced to the solution of a Fredholm integral equation of the second kind. 
This equation is solved both asymptotically and numerically, and the resistive torque on the disk and surface 
velocity profiles are computed for varying values of the ratio of the coefficient of surface shear viscosity to the 
coefficient of viscosity of the substrate fluid, and depth of the disk below the surface. 

1. I N T R O D U C T I O N  

For many years chemists, chemical engineers and others have been interested in the two-phase 
fluid system in which a surfactant monomolecular film or fluid covers the surface of a large body 
of different fluid. For incompressible insoluble surfactants the effect on the dynamics of the 
substrate fluid is described by means of a coefficient of surface shear viscosity 7, which appears 
in the boundary conditions applied at the substrate-surfactant surface. The appropriate boun- 
dary condition can be deduced from the work of Scriven (1960), who studied the motion of a 
thin fluid interface between two bulk fluids of differing viscosities. Thus, if the substrate fluid is 
in axisymmetrical rotational motion in which the fluid particles have only an azimuthal 
component of velocity v(p, z), (p, z) being cylindrical polar coordinates with the z-axis drawn 
perpendicular to the film and into the bulk fluid, the conventional condition ~v[~z = 0 at a free 
surface is replaced by the condition 

3v 02v ^ 

at the surfactant surface, where/~ is the substrate coefficient of viscosity. 
A number of ways have been suggested for the experimental determination of 7, and a 

review of recent work is given in Goodrich 0973). In particular, this author and his col- 
laborators (1969, 1970), and more recently Briley et al. (1976) and the present author (Shail 
1978) have examined the dynamics of a rotating disk viscometer for the measurement of 7. The 
apparatus consists of a thin disk inserted into the plane interface between the surfactant film 
and the underlying substrate. The disk is rotated slowly, and the torque necessary to maintain 
the steady rotation is measured. Assuming that the fluid motion is slow enough to permit 
linearisation of the Navier-Stokes equations, suitable theoretical formulae for the driving 
torque in terms of the ratio ~//# enable the surface shear viscosity to be evaluated. 

This apparatus appears to have several drawbacks. The theoretical analyses indicate that it 
is not a particularly sensitive method for measuring small coefficients of shear viscosity. 
Further, from the practical point of view the delicate positioning of the disk in the surfactant- 
substrate interface would seem to be of some difficulty. Thus, it is of interest to examine 
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alternative configurations and the object of this series of papers is to consider some viscometry 
problems for rotating bodies which are completely immersed in the substrate fluid, a system 
which also avoids the evaluation of film torques such as act on the edge of the disk in the 
Goodrich apparatus. This type of instrument can be regarded as the axisymmetric analogue of 
the viscous traction surface viscometer (see Goodrich 1973). 

The outline of this paper is as follows. In section 2 the axisymmetric problem of a slowly 
rotating solid in a container of viscous fluid is formulated. The plane fluid surface is covered 
with a surfactant film. A Green's function type integral representation is derived for the 
azimuthal velocity component v(p, z), which satisfies the boundary conditions on the wetted 
surface of the container and the surfactant film (the ratio ~ = rt[/z enters into this representation 
via the Green's function). Imposition of the no-slip boundary condition on the rotating solid 
then leads to a Fredholm integral equation of the first kind for the source distribution in the 
integral representation for v(p, z). The resistive torque is expressed in terms of this source 
density. 

In section 3 the problem is specialised to that of an immersed thin circular disk rotating in a 
semi-infinite fluid. Using Williams' (1%2) method the integral equation of the first kind, whose 
solution has an integrable singularity at the disk edge, is converted into a Fredholm integral 
equation of the second kind for a derived quantity O(x) which is regular on [0, I], its domain of 
definition. The torque is also expressed in terms of O(x). This integral equation does not seem to 
be soluble in closed form, so in section 4 some asymptotic results are derived, valid when h, the 
depth of the plane of the disk beneath the surface, is large compared with the radius of the disk. 

Section 5 contains the results of a numerical investigation of the integral equation for O(x) 
and the evaluation of the resistive torque on the disk for varying values of ,~ and h. 

It has been suggested by Prof. Howard Brenner that, rather than measure the driving torque 
on the disk, a better experimental procedure for determining ~ would be to measure the 
azimuthal velocity, or equivalently the period of revolution, of a suitably marked fluid particle 
in the surfactant fluid surface. Thus, in section 6 the problem of computing surface velocity 
profiles is investigated, and some numerical and graphical results are presented. 

2. B A S I C  F O R M U L A T I O N  

The geometrical configuration considered is as follows. An axisymmetric container, whose 
axis is vertical, contains incompressible viscous fluid on whose plane horizontal surface is a 
thin layer of immiscible surfactant a few molecules thick. We denote by S1 the wetted surface 
of the container and by $2 the surfactant layer. The fluid contains a fully-immersed axisym- 
metric solid which rotates slowly about the common axis of symmetry of the solid and the 
container with constant angular speed II. The surface of the rotating solid is S, and T is the 
bulk fluid volume bounded by S and Sl U $2. 

Let O be a suitably chosen origin and let (p, ,b, z) be cylindrical polar coordinates such that 
Oz coincides with the downward drawn vertical axis of symmetry of the configuration. The 
surfactant layer then occupies a circular region $2 of radius R of the plane z = - h, where h > 0. 
For sufficiently small angular Reynolds numbers the velocity field v in the bulk fluid satisfies the 
linearized Navier-Stokes and continuity equations 

curl curl v = - Vp, [1] 

div v = 0, [2] 

where p is the dynamic pressure and # the coefficient of viscosity of the bulk fluid. Assuming 
that the streamlines are circles lying in planes perpendicular to Oz, the vector v has a non-zero 
component v(p, z) in the 4,-direction only. Since v is independent of $, the equation of 
continuity (2) is satisfied identically, and from (1) it follows that p is constant throughout the 
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fluid, v satisfying the equation 

02v 1Or 02v v 
dp 2 = o. [37 

The boundary conditions imposed on v are the usual no-slip conditions on S and S~, and on 
the surfactant region $2 the balance of substrate stresses and the internal film stresses leads to 
the "generalized impedance condition" discussed in the introduction to this paper. Thus, 

v(p, z) = lip, (p, z) ~ S, [4] 

v(p, z) = 0, (p, z) ~ S,, [5] 
and 

dv ~2v ^ 
t z - ~ - ~ - ~  = o, (p,z)~S2 [6] 

(z = -  h on Sz), where rl is the coefficient of surface shear viscosity of the adsorbed film. In 
terms of X = ~//~, [6] reads 

OV_ A 02v ^ 
az ~ = O, (p, z) E 82. [6a] 

Thus it = 0 corresponds to a clean surface. When it ~ ,  [6a] is equivalent to 02v/Oz 2= 0 on 
z = -h .  Using [3], v(p, -h)  satisfies 

a2v ~ 1Or V=O 
Op 2 p Op p2 , 

with general solution 

v(p, -h )  = Ap + Bp-k 

Since v(O, -h )  = v (R , -h )  = 0 it follows that A = B = 0. Thus, in this limit, v(p, - h )  = 0 and the 
surfactant acts as a rigid plane boundary. 

We next construct an integral representation for v(p, z) by utilising Green's theorem. From 
[3] it is easily verified that the function 

w(p, 4,, z) = v(p, z) cos 4, 

is harmonic in T, and clearly satisfies conditions [5] and [6] if v does. Let G(r, r') be a Green's 
function which satisfies [5] and [6] and the equation 

V2G(r,  r') = -4zrS(r - r') 

for r, r' E T. An application of Green's theorem to the function w and G in the region T 
bounded by S U S, U $2 now shows that, for r E T, 

1 OW(r,)dS,+~_ff~r/sfP, cos4,,~_n,(r,r,)d s, w(r) 

w(r)~-~(r,'0G r')}dS', [7] 

where 81On' denotes differentiation along the outward drawn normal to S. 
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On Sz, dS' = p' dp' d$' and, omitting arguments of functions for brevity, the p'-integration in 
the final integral in [7] can be written as 

A fo R [~(~) azv a2G"h ' ' [ U ~z,z- V ~z,2 ~ p do, [8] 

where G°)(p, z;p',z') is the coefficient of cos(~b-4Q in the Fourier expansion of G(r,r'). 
G(°(p, z; p', z') satisfies [3] for p~ p', z~ z', and hence [8] can be expressed as 

A (oo", , 

Jo t r ap,V aa' 
[93 

The vanishing of integral [9] now follows by several integrations by parts and use of the 
conditions v(R , -h )= G(1)(p, z; R, - h ) = 0  and v(0 , -h)=0 .  Note that if the rotating solid 
intersects the surface $2, [9] is not identically zero, there being non-vanishing contributions to 
the parts integrations from the lower limit, which is no longer zero. (See Shail (1978) for an 
alternative formulation of such a problem for a rotating disk in the surface.) 

In order to simplify [7] still further we next apply Green's theorem to the functions p' cos $' 
and G(r, r') in the region T* interior to S with r E T, to obtain 

L f  p'c°s ,aG , ~n,(p'cos dS'. 4, -g-~ dS = f s f  G(r, r') 4,') [10] 

Thus, combining [7], the vanishing of [9], and [10], it follows that 

r 'ES,  rE T, [11] 

where the source density ~r(r') is defined by 

1 , a [ v ' ~  
: - p 7 . ,   71. 

[121 

Condition [4] now gives a Fredholm integral equation of the first kind for the determination of 
or, namely 

lip cos 4) = ( ( ¢r(r')G(r, r') cos ~b' dS', r, r' E S', 
J S  J 

or, equivalently, 

f~P = rSc o'(p', z')G(~)(p, z; p', z')p' dl', (p', z') E C, [13] 

where C is the bounding curve of S in a meridional plane, and di' denotes the element of arc 
length of C. 

If the rotating solid is a thin circular disk of radius a in the plane z =0, then [10] is 
meaningless. However, it follows directly from [7] that [13] is still valid, the integration being 
along the upper and lower edges of the meridian section of the disk; defining or* = 2m then [13] 
may be written as 

L 
a 

l~p = 7r ¢r*(p', 0)G(l)(p, 0; p', 0)p' dp', 0 -< p -< a. [14] 
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Consider next the frictional couple N acting on the rotating solid. The tangential shear 
stress ~" on the surface S in the direction of ~-increasing is 

Thus, 

= -4~Tzo'(p, z). 

On \p /  

= -8r2~ f p2(r(O, z) dl. 
,IC 

[15] 

In the case of the rotating disk, the appropriate couple formula is 

f0 a N = -8~'2~ p2o'*(p, 0) dp. [16] 

3. THE ROTATING DISK PROBLEM 

In the remaining sections of this paper we treat in detail the problem of a slowly rotating 
thin disk in a semi-infinite fluid occupying the region - h  -< z < oo. Units are chosen so that the 
radius of the disk is unity, it being specified by z = 0, 0-< p-< 1, 0-< ~-< 2~r. The appropriate 
Green's function now satisfies [6] on z = - h ,  0-<p < ~, 0-< 4, _< 27r and, together with its first 
derivatives, must vanish as p2 + z 2 ~ ~. The method of separation of variables shows that 

G(~)(p, z; p', z') = 2 ~ J,(tp)Yl(tp'){e -'lz-z'J + 1 - A t  e_2th_,z÷z,)} dt 

In [17] the term 

f; 2 Jl(tp)Jl(tp') e -'lz-z'[ dt 

[17] 

is recognisable as the coefficient of cos (4, - ~b') in the expansion of the singular inverse distance 
Green's function in cylindrical coordinates and the remaining term in [17], which is regular 
when p = p', z = z', is a correction to ensure that [6] is satisfied on z = -h.  

The governing Fredholm integral equation [14] can be written as 

f~ . . . .  f f ® l - A t  dt}dp', 0 < p <  fo f(P')Ko(p, p') dp' = p - Jo lip )[Jo ~ e-2h' Ji(tp)Ji(tp') - _ 1, [18] 

where 

and 

K0(p, p') = Jt(tp)Jl(tp') dt [19] 

flf(p)=2~p~r*(p,O). (20) 

It is well-known that as h-->oo the solution [(P9 of [18] exhibits an inverse square root 
singularity as p'--> 1 - 0. In order to carry out numerical analysis for arbitrary A, h, it is therefore 
convenient to transform [18] into a Fredholm integral equation of the second kind for a derived 
function which is regular. This is a routine calculation using Williams' (1962) method, and the 
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result is 

where 

and 

L 
I 

O(x)+ L (x , y )O(y )dy=2x ,  O-<x<l ,  

fx' w-lf(w) • O(x) = x ( w 2_ x2)ii2 uw 

2 { = l - A t  -2hi • 
L(x,y)=-~j ° y--~---A~e smtxsintydt. 

[21] 

[22] 

[23] 

In order to express the frictional couple in terms of O(x) we note that from [22], 

2_w d_ f '  O(x) 
f(w)- r: dwJw (x 2- w2) I/2dx" [24] 

Substituting in [16], using [20], then gives 

fo I z d f ( l  O(x) . I .  

on integrating by parts and interchanging orders of integration the result 

N = - 16[1 fS xO(x) dx [25] 

is obtained. We note here that in the limit h ~ oo, i.e. an unbounded fluid, [21] has solution 

and from [25], 

O(x) = 2x, 0 <- x <- 1, 

N~ = - ~  1)~, 

a well-known result. Further, from [24], 

4 w 2 

f (w)  = or(1 - w2-'~ ' 

exhibiting the inverse square root singularity referred to above. 
For arbitrary h and A the solution of integral equation [21] is not known and hence 

numerical or asymptotic procedures must be used. However the kernel [23] can be evaluated in 
terms of tabulated functions, a feature which is useful in checking computed values in the 
numerical solution of [21]. 

The kernel [23] can be written in the form 

L(x, y) = l {M(lx - Yl) - M(x  + r)}, [26] 

where 

M'" ( = l - A t  -2ht fo ° f : l - -~At  iv j= jo  ~-~-~e c o s v t d t  = -  e -2S t cosv td t+2  e-2htcos vtdt .  [27] 
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The first integral in [27] is elementary, and the second can be expressed in terms of the 
exponential integral El(Z) (see Abramowitz & Stegun 1964), defined for complex z with 
Re z > 0 by 

f El(z) = t -1 e -zt dt. 

The final form obtained for [27] is 

2h 2e 2h/a 
M(v) = - 4h-h-rT~v2 + T Re eiV/aEl{(2h + iv)/h }. [28] 

A short table of El(z) for complex values of the argument z is given in Abramowitz & Stegun 
(1964). 

4. A S Y M P T O T I C  R E S U L T S  

When h >> 1 the interaction of the disk with the surfactant is weak and it is possible to obtain 
iterative solutions to [21]. We delineate three distinct cases wherein (i) A = O(h), i.e. the 
surfactant film is very viscous compared with the bulk fluid, (ii) A = O(h-l), i.e. the film has 
small surface shear viscosity compared with the viscosity of the bulk fluid, and (iii) A = O(1). 

4.1 The case h >> 1, ;t = O(h) 
We write q = ;t/h, whence q = O(1), and put ht = u in [23]. The asymptotic expansion of 

L(x, y) is then found as 

2 f® 1 -  qu -2~ ~xY u2 U4 } 
L(x ,y)=--~J ° 1---~qu e [ hZ ~ ( x 3 y + x y 3 ) + O ( h  -6) du, 

and the first terms in the Neumann iterative solution of [21] are 

O(x) = 2x(l  ____~_2 f ® l -  qu u2 e_2U du) + O(h-5). 
37rh3 Jo l + qu 

[29] 

The infinite integral in [29] can be evaluated in terms of exponential integrals with the result 
that 

fo ®l qu 2e_2U = ~ e 2 ' , E l ( 2 / q ) - 1 4 1  1 
l ~ q u  u du q2 2q 4" [30] 

Using [29] in [25] an approximation to the torque ratio N/N~ is 

____N 1___2_2 f 2 e , / q  E i ( 2 ] q ) _ l + l _ ~ } + O ( h _ S ) .  
N~ = 3zrh 3 [q3 q2 2q [31] 

4.2 The case h >> 1, A = O ( h  -1) 

Setting Ah = r, where r = O(1), the function M(v) in [28] can be written as 

2h . 2h ~ ,(2h2/r)+(ivhlr)~, [2h2± ivh~ 
M ( v ) -  4hT~v2+-~--Ke~ ~lk r ~- r ]"  

For h ~> I, M(v) is n o w  expanded asymptotically using the result that 

2--- 6--+ 
Z Z Z 3 Z 4 " " " ' 
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as Iz I -~oo for larg z I < (3[2)Ir, and the form obtained for the kernel [26] is 

L(x,y)=~__~h3{l_ 1 2 y2 6r)}+ ~-~(X + + O(h-7). 

The iterative solution of [21] and the torque ratio N/N~ are found as 

x 1 [1 3 1 '~ O(x) = 2x - ~ + ~ ~ x + -~ x + 2rx ] + O(h-6), 

and 

, 1 ( , )  N = l - ~ - - ~ - 3 + ~ - ~  3 + r  +O(h -6) 
N~ 

[321 

[33] 

[341 

As might be expected, the effect of the weak surfactant only appears in [34] in the term of order 
h-S, whereas for the very viscous surfactant its effect is apparent in a lower-order term in [29]. 

4.3 The case h >> 1, A = O(1) 
In this case the integral in form [23] of the kernel can be expanded asymptotically in inverse 

powers of h using Watson's lemma, with the result that 

1 
L(x, Y) = 2---~-~{xy - ~ - ~ }  + O(h-5). 

The Neumann iterative solution of [21] is 

O(x) = 2x - x---L- + A x  
37rh 3 rch4 + O(h-5) , 

[35] 

[36] 

[37] 

and the torque ratio is 

N 1 _ I__I___+ A___A___+ O(h_5) 
~ =  67rh 3 21rh 4 

The effect of the surfactant appears in [37] in the term of order h-4. 
All the approximate formulae of this section may be generalised without difficulty to higher 

powers of h -~. In some cases their range of applicability can be extended using the various 
methods of series improvement suggested by Van Dyke (1974). 

5. NUMERICAL SOLUTION OF [21] 

In this section we outline a numerical treatment of integral equation [21] using the standard 
Fox-Goodwin (1953) procedure. This method replaces [21] by a set of n simultaneous linear 
equations for the unknown O(x) evaluated at a selected number n of equally spaced pivotal 
points on the range [0, 1]. The finite integral in [21] is approximated by means of Gregory's 
integration formula, which involves a difference correction containing both forward and 
backward differences to the trapezoidal rule (this integration formula has the advantage of 
requiring function evaluations only at pivotal points inside the range of integration). Up to sixth 
differences were included in our computations. A first approximation to the solution of the 
approximating set of linear equations with differences is found by neglecting the difference 
correction. This first approximation is then combined with the difference correction in an 
iterative procedure to calculate more accurate solutions to the linear equations. The iterative 
cycle is repeated until, in a suitable norm, successive iterates differ by less than a preassigned 
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amount ~. (In our calculations e was taken as 10-s.) Having calculated 0 at the n pivotal points, 
the torque on the rotating disk is computed from [25] by Simpson's rule. 

The procedure adopted was to start with n = 7 and calculate the solution O(x) and torque for 
the given h and A. n was then increased in steps of 4 or 6 until successive values of the torque 
showed no change correct to three decimal places. It was found that apart from cases where h 
was small (e.g. h = 0.05), the iterative process converged in no more than two or three cycles 
for each value of n, and it was rarely necessary to go beyond n = 15. 

In the formulation of the set of linear equations described above, it is necessary to compute 
the kernel [23] at pivotal values of x and y. This was carried out using a NAG library integration 
routine of the Patterson type, but in order to obtain satisfactory convergence it proved 
convenient to use two forms of the integral M appearing in [26] and [27]. A simple contour 
integral transformation shows that 

I'= 1 -  At e_2h, I'® 1 -  A2t2 e_~, + 2A f® t .a_t2,2 M(v)  = Jo ~ cos vt dt = Jo 1 + A2t: sin 2ht dt Jo ,T ,~  , e -vt cos 2ht dt ,  

[381 

where the various parameters satisfy the inequalities 0---v-< 2, 0 < h < oo, 0---A < oo. Writing 
s = v/2h, the form 

j la , ,  1 f®4h2-A2t2 _st ~ +t 
( v )=~-~ j  ° 4h2+A2t2e s in td t+2A 4h 2 A2tEe-Stcos td t  [39] 

was used for s -> 1, whereas for 0 < s < 1 the original expression 

~z" " 1 f =  v - At e_,/, 
tvj = vJo ~ cos t dt [40] 

was preferred. In [39] the infinite range of integration was truncated at t = 18/s, the cor- 
responding limit in [40] being 18s. M(0) was approximated by 

I rlS2h-At t - 
MfO)=~-~j ° ~ e -  dt. [41] 

Sample computed values of L(x, y) for various x, y, A, h were checked against values calculated 
using [26], [28] and the tables in Abramowitz & Stegun (1964); in each case the agreement was 
complete to five decimal places. 

Detailed calculations were made for varying A and h = 0.25, i.e. the disk at a depth below 
the surfactant film of one quarter of its radius. Table 1 gives the computed values of N(A)//~fL 
where N(A) is the resistive torque, and also the ratio N(A)/N(0) of the torque with the 
surfactant present to the torque when z = - h  is a clean free surface. The values given are 
correct to 3 decimal places. 

We observe from table 1 that the increase in N(A)/N(O) is most rapid for surfactants with 
small A; there is only a 1.2 per cent increase in the ratio as A goes from 100 to ~. This indicates 
that the submerged-disk apparatus is more suitable for measuring small values of A, whereas the 
Goodrich configuration, involving direct edge interaction with the film, is more sensitive for 
larger A. 

To evaluate A for an observed value of N(A), several procedures can be used, e.g. inverse 
interpolation. Thus, from the values of N(A) for A = 0.1(0.1)0.6 with h =0.25, the value of A 
corresponding to N(A) = 9.7630 is given by inverse interpolation as 0.34995; the actual value is 
0.350! Alternatively, the method of least squares can be used to find a polynomial represen- 
tation of A as a function of N(A). For h = 0.25 and 0 -< A -< 1 such a fit, accurate to about 1 per 
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Table 1. 

;t 0 0.25 0.5 0.75 1 1.25 
N(a)/ttfl 8.241 9.565 10 .421 11.038 11.509 11.882 
N(A)/N(O) 1 1.161 1.265 1.340 1.397 !.442 

A 1.5 1.75 2 3 4 5 
N(,~)/#fl 12.186 12 .439  12 .653  13.259 13.638 13.898 
N(,~)/N(O) 1.479 1.510 1.536 !.609 1.655 1.687 

A 6 8 10 50 100 oo 
N(,~)/~fl 14.088 14 .347  14 .516  15.142 15.231 15.323 
N(A)/N(O) 1.710 1.741 1.762 1.838 !.848 1.860 

cent, is given by 

A = - 7 . 5 1 4 0 6  + 2 . 4 6 2 5 0 3 N  - 0 . 2 8 5 2 3 6 N  2 + 0 . 0 1 1 7 7 6 N  3. 

Note, however, that the regression coefficients in such a formula will vary with h, and to avoid 
this multiple regression must be used. 

To see the effect of decreasing h, table 2 gives some values for h = 0.125. Comparing with table 
1, it will be seen that there is, for example, a 63 per cent increase in the ratio N(A)/N(O) for 
h = 0.125, A = 0.75 against the 34 per cent increase when h = 0.25. In order to emphasize the 
torque, the disk should be placed as near to the surface as is practicable; however it should not be so 
close to the surface that finite disk-thickness effects begin to distort the results. 

The variation of N(A)/N(O) with A is shown in figure 1 for h = 0.25 and 0-< A -< 1; for larger 
A the curve approaches asymptotically the value 1.860 corresponding to A ~ oo (a rigid plane). 

It was found that for very small h convergence of the Fox-Goodwin scheme was slow, 
particularly for large A (this is probably dfie to the same ill-conditioning of the approximating 
set of linear equations as observed by Fox and Goodwin in their investigation of Love's 

Table 2. 

0 0.25 0.5 0.75 

N(A)//zI~ 7 .177  9 .167  10.570 11.662 
N(A)/N(O) 1 1.277 1.473 1.625 

1.4 

1.2 

A 

1.3 

I.I 

1 . 0  I ~ I i I 

0 O . e  0 , 4  <::).6 O , a  i.O 

Figure 1. Graph of N(A)/N(O) vs a for 0 - a  -<1 and h = 0.25. 
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Table 3. 

n 11 15 21 25 29 

N(0)//~II 6.233 6.264 6.272 6.273 6.273 

Table 4. 

n 11 15 21 25 29 

N(oo)/gtq 44 .01  42.06 41.75 41.73 41.72 
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equation for the two-disk capacitor). In table 3 the first row gives the number of pivotal points 
and the second the computed value of N(A)/g[I for A = 0 and h = 0.05. Convergence is seen to 
be achieved for n = 25. In table 4 similar results are given for A = oo, h = 0.05. The rate of 
convergence is seen to be much slower, but the torque, correct to 3 significant figures, can be 
confidently given as 41.7. 

In the last case the torque on the disk can also be estimated from an asymptotic formula due 
to Leppington & Levine (1970). Adapting their notation to the problem under consideration, we 
have that 

N<°°)=~h-2logh+ 2(log 87r-~)+ 3 h(log h)2 + ..., as h--0. 
/zfl ,r 

[421 

When h = 0.05, [42] gives 

N(o~)/gfl = 40.95, 

the final term in [42] making a contribution of 0.43. Thus, the asymptotic result would seem to 
be reasonably close to the computed value. 

6. SURFACE--VELOCITY D I S T R I B U T I O N  

As indicated in the introduction, the measurement of the azimuthal velocity of surface 
particles may prove to be a better experimental method for determining surface shear 
viscosities than torque measurements. Thus, we now discuss the computation of surface 
velocity for varying A and h. 

The surface velocity v(p, - h )  is given by 

~o I v(p, - h )  = lr tr*(p', O)Gt¢l)(p, - h ;  p', O)p' do'; [43] 

thus, from [17] and [20], 

v(p , -h)  = 2a f oI f¢o ') { f o ~ e-h' Ji( tp )Jt( tp ') dt} do', [44] 

where f(p') is related to P(x) by [24]. Substituting from [24] in [44], the p'-integration can be 
carried out by first integrating by parts and then using the formula 

It is found that 

fo x g'Jo(tp') j , sin tx [45] 
(x 2_ p,2)~n ap = t 

v(p,_h)=_~ f o' ® e -~ . O(x){f I ]--~-~ Jt(tp) sm tx dt } dx. [46] 
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To compute the surface velocity profile the double integral in [46] must be evaluated from a 
knowledge of O(x) at the pivotal points. The integrand of the infinite integral contains 
oscillatory terms, and can be converted into a more rapidly convergent form as follows. Write 

~0 ~ 
1 = e -txt+l)" dr;  [47] 

1 + A t  

then, interchanging orders of integration, 

e-ht 
fo ~ Jl(tp) sin tx d t =  fo°e {fo~e-t~v+h)tJl(tp) sin tx dt I dr. [481 

The inner integral in [48] can be evaluated using the result (Watson 1966) that 

f o  I a e-atJ~(bt) dt  = -~ - b( a2 + b:)lt2, 

where Re a > 0, Re (a +-ib)> 0, and the value of the square root taken is that which makes 
la + (a2+ b:)l/21 > Ibl. The final form obtained for v(p, -h )  is 

where 

_ 2 m l ]  ( I 
- -  O(x)P(x,  p) dx, [49] v ( o , - h ) -  rr Jo 

P(x ,  p) = fo ~ e-"{x(r + u 2 - x 2 + p2)1/2 _ u(r  - u 2 + x 2 - p2)l/2}r-1 dr ,  [501 

with u = Au + h, and r = {(u 2 - x 2 + p2)2 + 4x2u2}Zt2. For given p and x the integral [50] converges 
rapidly and is computed by means of a NAG algorithm for the evaluation of integrals of the 
form 

fo e-~g(v) dr. 

The finite integration in [49] is then completed using Simpson's rule. 
In figure 2 we sketch some computed velocity profiles for A = 0, 0.025, 0.075, 0.25, 0.5, 0.75 

and 1.00, with h = 0.25. The velocity profiles flatten quite rapidly with increasing A, as a result 
of the rigidity given to the surface by surfactants of increasingly large surface shear viscosity. 

It was observed empirically that for h = 0.25 and A varying over a considerable range, the 
maximum value of t i - ~ v ( p , - h )  occurred at about p = 0.88. This variation of the maximum is 
depicted in figure 3 for A in the range [0, 1], and sample values are given in table 5, where values 
of t iT are also given, T being the periodic time of revolution of a surface fluid particle with 
p = 0.88. From table 5 it can be seen that there is about a 3.5 per cent decrease in Vmax relative to a 

Table 5. 

,~ 0 0.025 0.05 0.075 0.1 0.25 0.5 
li I Vm~x 0.692 0.668 0.647 0.629 0.612 0.532 0.444 
l iT  7.990 8.277 8.546 8.790 9.035 1 0 . 3 9 3  12.453 

;t 0.75 1 1.25 1.5 1.75 2 3 5 
li-IVmax 0.384 0.339 0.304 0.276 0.252 0.233 0.177 0.118 
l iT 14.399 1 6 . 3 1 0  1 8 . 1 8 8  20.033 2 1 . 9 4 1  23.730 31.238 46.858 
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Figure 2. Velocity profiles for A = 0, 0.025, 0.075, 0.25, 0.5, 0.75 and 1.00 with h = 0.25. 
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Figure 3. Graph of fl-mVmax VS A for 0 --< A --< I and h = 0.25 (Vmax is computed at p = 0.88). 

free surface for A = 0.025, whereas for A = 0.1 the percentage decrease is as much as 11.5 per cent. 
Using the method of least squares the results in table 5 have been fitted to cubic polynomals 

for the ranges 0 <-A-< 0.1 and 0.1-< A-< 2, corresponding approximately to the ranges 7.99-< 
fiT-<9.1 and 9.1-< fiT-< 23.73. For an aqueous substrate with /z = 1 0  - 2  poise, the following 
formulae for r/are obtained: 

7/= 10-2{-0.008114f13T3+0.217908~2T 2 -  1.8481441~T + 4.99412}, 0-<r/-< 10 -3, [51] 

rl = lO-3{ -O.O006f13T3+O.O3673f~2T2+O.OO422~T-7 .0420} ,  10-3-  < 1/-<2x 10 -2. [52] 

The maximum error in [51] and [52] is about 1.5 per cent. 
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We end this section by estimating some typical periodic times of revolution of surface 
particles. The disk is taken to be of radius 1 cm, at a depth of 0.25 cm below the surface, and 
the substrate fluid is water. Then A = 100 17, where r/is measured in surface poise. Consider a 
surfactant whose coefficient of surface shear viscosity is of the order of 10 -3 surface poise, e.g. 
the stearic acid monolayers used by Poskanzer & Goodrich (1975). Then A -0.1 and from table 
5, again focussing attention on a fluid particle at p = 0.88 cm, the period of rotation is T, where 

T = 2zr x 0.8________88 = 9.03fl_ I sec. 
0.612fl 

For a clean surface (A = 0) the corresponding period of rotation is To = 7.99fl -~ sec, there being 
about a 13 per cent increase in the period due to the presence of the surfactant. For fl = 0.1, 
giving an angular Reynolds number Re based on the disk radius of 10, the period of disk 
rotation Td is about I rain, and T - To - 10 sec, whereas if II = 0.01, Re = 1, Ta - 10 min and 
7'1-T0-100see. For a surfactant with , -  10 -4 surface poise, the corresponding time 
differences are reduced by a factor of approx. I0, the percentage increase in period due to the 
surfactant being about 1.5 per cent. 

7. C O N C L U D I N G  R E M A R K S  

In this paper a start has been made on the investigation of a number of axisymmetric 
viscometry problems in which an immersed body of revolution rotates slowly in a fluid whose 
surface is covered by an adsorbed film. The particular case of a thin disk fully immersed in a 
semi-infinite body of fluid has been examined in detail, but the formulation given in sections 2 
and 3 is general enough to permit consideration of everywhere bounded fluids; all that is 
necessary is to use the Green's function appropriate to the container. The disk may also be 
replaced by a sphere, and some aspects of this problem are treated in a further paper in this 
series. For a sphere rotating in a semi-infinite fluid, the problem is best solved using a 
bispherical coordinate system, but it may also be formulated in terms of Fredholm integral 
equations of the first and second kinds. The latter approach appears to be the only one 
generally available for bounded fluids. 

It is hoped that the analysis in this paper will stimulate experimental investigation of the 
techniques suggested for measuring the coefficient of surface shear viscosity. In particular it 
seems plausible that the submerged-disk technique will be superior to the Goodrich configura- 
tion for the measurement of small shear viscosities. 
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